Bulletin of Information Technology (BIT)
Vol 6 No 3: September 2025

Pengembangan dan Implementasi Sistem Deteksi Serangan DDoS Berbasis Algoritma Random Forest

Kiswanto, Dedy (Unknown)
Ramadhani, Fanny (Unknown)
Maulida Surbakti, Nurul (Unknown)
Afiati Nasution, Nadrah (Unknown)



Article Info

Publish Date
26 Sep 2025

Abstract

Serangan Distributed Denial of Service (DDoS) merupakan ancaman serius bagi keamanan jaringan, sementara metode deteksi tradisional seperti threshold-based detection dan signature-based detection memiliki keterbatasan dalam mengenali pola serangan baru maupun anomali lalu lintas yang kompleks. Penelitian ini bertujuan merancang dan mengimplementasikan model prediksi serangan DDoS berbasis algoritma Random Forest yang mampu membedakan trafik normal dan berindikasi serangan secara akurat. Pendekatan Research and Development (R&D) digunakan, meliputi studi literatur, perancangan model, implementasi, serta evaluasi performa menggunakan metrik akurasi, precision, recall, F1-score, confusion matrix, dan learning curve. Berdasarkan hasil evaluasi, model Random Forest menunjukkan kinerja sangat baik dengan akurasi 0,99942 (99,942%). Precision untuk kelas 0 dan 1 masing-masing sebesar 0,99979 dan 0,99884, sedangkan recall mencapai 0,99928 untuk kelas 0 dan 0,99966 untuk kelas 1. Nilai F1-score tinggi, yaitu 0,99953 untuk kelas 0 dan 0,99925 untuk kelas 1, dengan macro average F1-score sebesar 0,99939 dan weighted average sebesar 0,99942, menunjukkan keseimbangan performa pada kedua kelas. Confusion Matrix menunjukkan kesalahan klasifikasi rendah (44 false positive dan 13 false negative dari 99.066 sampel). Analisis learning curve mengungkapkan akurasi pelatihan stabil di atas 0,998, sedangkan akurasi validasi meningkat dari 0,986 pada 10.000 data hingga di atas 0,998 pada 80.000 data, dengan jarak antarkurva semakin kecil. Pola ini menandakan model mampu memanfaatkan data tambahan untuk meningkatkan generalisasi tanpa gejala overfitting atau underfitting. Temuan ini membuktikan bahwa model Random Forest yang dirancang dapat menjadi solusi deteksi dini serangan DDoS yang andal, adaptif, dan berpotensi diintegrasikan dalam sistem keamanan jaringan secara real-time.

Copyrights © 2025






Journal Info

Abbrev

BIT

Publisher

Subject

Computer Science & IT

Description

Jurnal Bulletin of Information Technology (BIT) memuat tentang artikel hasil penelitian dan kajian konseptual bidang teknik informatika, ilmu komputer dan sistem informasi. Topik utama yang diterbitkan mencakup:berisi kajian ilmiah informatika tentang : Sistem Pendukung Keputusan Sistem Pakar Sistem ...