Journal of Applied Data Sciences
Vol 6, No 4: December 2025

Application of Convolutional Neural Networks for Automated Iris Edge Detection in Sleepiness Monitoring during Blended Learning

Tukino, Tukino (Unknown)
Yuhandri, Yuhandri (Unknown)
Sumijan, Sumijan (Unknown)



Article Info

Publish Date
13 Sep 2025

Abstract

This study introduces a novel lightweight Convolutional Neural Network (CNN) model, T-Net, designed for real-time drowsiness detection based on eye closure patterns. The model was developed to address the prevalent issue of student fatigue in resource-constrained environments, such as during prolonged online learning or blended learning sessions. Unlike traditional deep learning models, T-Net prioritizes efficiency while maintaining high accuracy, making it suitable for deployment on devices with limited computational resources. The model uses a 68-point facial landmark detection technique to extract the eye region and accurately classify eyelid states (open or closed). Evaluated on two benchmark datasets, Dataset-1 (342 eye images) and Dataset-2 (1,510 eye images), T-Net demonstrated superior performance, achieving classification accuracies of 99.33% and 99.27%, respectively, outperforming other pre-trained models such as VGG19, ResNet50, and MobileNetV2. Usability testing revealed a high acceptance rate, with a System Usability Scale (SUS) score of 84.5, indicating the system’s practicality for real-world use. Additionally, statistical analysis showed a significant correlation (r = 0.67, p 0.01) between prolonged screen time and the emergence of visual fatigue symptoms. This study highlights the effectiveness of a lightweight CNN approach for real-time fatigue monitoring, offering a balance between performance and computational efficiency. The results suggest that T-Net can be effectively integrated into student monitoring systems to ensure alertness during learning sessions. Future research will focus on expanding the dataset, integrating infrared imaging for low-light environments, and incorporating additional fatigue indicators such as yawning and head pose.

Copyrights © 2025






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...