Journal of Applied Data Sciences
Vol 6, No 4: December 2025

A Data-Driven Mixed Integer Nonlinear Programming Model for Cost-Optimal Scheduling of Perishable Production and Workforce

Putri, Mimmy Sari Syah (Unknown)
Mawengkang, Herman (Unknown)
Suwilo, Saib (Unknown)
Tulus, Tulus (Unknown)



Article Info

Publish Date
04 Sep 2025

Abstract

This study presents a data-driven, Mixed Integer Nonlinear Programming (MINLP) framework for optimizing the multi-period production scheduling of perishable products with integrated workforce planning. Its primary novelty is the holistic integration of a continuous exponential decay function for product deterioration with dynamic workforce planning, creating a unified model that optimizes production, inventory, and labor simultaneously. This approach addresses key challenges in perishable inventory systems by treating labor as a controllable resource rather than a fixed constraint. Mathematically, the model includes nonlinear inventory balance equations with decay terms and resource-dependent capacity constraints. The objective is to minimize total operational cost, comprising production, holding, and spoilage costs. Computational experiments, based on a realistic case study, demonstrate that the proposed model reduces total system cost by 6.2% and spoilage costs by 43.2% compared to a standard heuristic benchmark. The resulting production and labor schedules align closely with demand fluctuations, supporting both economic and operational efficiency. This unified framework advances the mathematical modeling of sustainable production planning and offers a practical tool for real-world industries such as food processing and pharmaceuticals.

Copyrights © 2025






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...