Untuk tetap bersaing di pasar global, produsen tahu harus memastikan kualitas produk yang konsisten. Pabrik Tahu Sumber Barokah, sebagai pemasok tahu bernutrisi tinggi yang telah lama beroperasi, menghadapi tantangan dalam menjaga kualitas sepanjang proses produksi. Penelitian ini membandingkan kinerja algoritma Naïve Bayes dan Classification and Regression Trees (CART) dalam mengklasifikasikan kualitas tahu menggunakan dataset yang dikumpulkan dari pabrik, yang berisi sampel tahu berkualitas tinggi dan rendah. Metodologi penelitian mencakup identifikasi masalah, pengumpulan data, preprocessing, klasifikasi, validasi, evaluasi, dan penarikan kesimpulan. Cross-validation digunakan untuk validasi model, dan confusion matrix digunakan untuk menilai precision, recall, dan F1-score. Hasil eksperimen menunjukkan bahwa Naïve Bayes mencapai akurasi 91%, precision 100%, recall 85%, dan F1-score 92%, sedangkan CART mencapai akurasi 86%, precision 70%, recall 100%, dan F1-score 82%. Hasil ini menunjukkan bahwa Naïve Bayes lebih cocok untuk mengklasifikasikan kualitas tahu dalam konteks ini.
Copyrights © 2025