PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol. 13 No. 2 (2025): September 2025

Machine Learning Approaches to Sentiment Analysis of Mental Health Discussions on Platform X

Jumaryadi, Yuwan (Unknown)
Fajriah, Riri (Unknown)
Salamah, Umniy (Unknown)
Priambodo, Bagus (Unknown)
Lystha, Arie (Unknown)



Article Info

Publish Date
30 Sep 2025

Abstract

Sentiment analysis on mental health issues is crucial for understanding public perceptions of healthcare services. This study analyzed tweets related to mental health on platform X in 2025 using SVM, Random Forest, and Naive Bayes algorithms. Data was collected through web scraping with Python, then evaluated using a confusion matrix with accuracy, precision, f1-score, and recall metrics. The classification results showed a distribution of sentiment: positive (3,667 tweets), neutral (838 tweets), and negative (704 tweets). A comparative analysis of the three algorithms revealed that SVM achieved the highest accuracy (78.69%), followed by Random Forest (75.04%) and Naive Bayes (70.44%), proving the superiority of SVM in classifying mental health sentiment. These findings provide valuable insights for stakeholders in improving mental healthcare services based on public feedback, while also offering a reference for effective sentiment analysis methods for social media data.

Copyrights © 2025






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...