Deteksi tindak kekerasan merupakan salah satu tantangan utama dalam pengembangan sistem keamanan berbasis teknologi, khususnya pada pengawasan video. Penelitian ini bertujuan untuk melakukan kajian literatur mengenai keunggulan, kekurangan, dan aplikasi dari berbagai metode kecerdasan buatan, yaitu Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)/Long Short-Term Memory (LSTM), 3D Convolutional Neural Network (3D-CNN), dan You Only Look Once (YOLO), dalam mendeteksi tindak kekerasan fisik. CNN dikenal efektif dalam mengenali pola visual statis, sementara RNN/LSTM unggul dalam analisis data sekuensial yang melibatkan aspek temporal. Di sisi lain, 3D-CNN menawarkan kemampuan untuk menangkap pola spasial dan temporal secara bersamaan dalam video, sedangkan YOLO menyediakan pendekatan real-time untuk deteksi objek, yang relevan untuk mendeteksi kekerasan dengan efisiensi tinggi. Studi ini membahas performa keempat metode berdasarkan parameter seperti akurasi, kecepatan, kompleksitas, dan kemampuan adaptasi terhadap data dunia nyata. Kajian ini diharapkan memberikan wawasan mendalam bagi pengembang sistem keamanan berbasis video dalam memilih metode yang paling sesuai untuk kebutuhan spesifik dalam mendeteksi tindak kekerasan fisik.
Copyrights © 2025