Jurnas Nasional Teknologi dan Sistem Informasi
Vol 11 No 2 (2025): Agustus 2025

Integrasi Algoritma FP-Growth dan K-Means untuk Analisis Keranjang Belanja dan Segmentasi Pelanggan pada Data Transaksi Ritel

Salsabila, Shafa (Unknown)
Novita Dewi, Ika (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

Seiring meningkatnya volume transaksi dalam industri ritel, kebutuhan untuk memahami perilaku konsumen secara mendalam menjadi semakin krusial. Penelitian ini bertujuan untuk menerapkan analisis keranjang belanja dan segmentasi pelanggan guna mengidentifikasi pola pembelian produk sekaligus memahami karakteristik pelanggan berdasarkan perilaku transaksional. Dataset yang digunakan adalah Retail Transaction Dataset dari Kaggle, berisi satu juta transaksi ritel tahun 2020 hingga 2024. Dataset diproses melalui tahapan pembersihan, transformasi format data, dan seleksi transaksi yang memenuhi kriteria minimal pembelian 2 produk per transaksi. Analisis dilakukan dengan algoritma FP-Growth dan K-Means. Hasil analisis FP-Growth menunjukkan adanya 16 aturan asosiasi dengan nilai support tertinggi sebesar 0.31%, confidence 7.35%, dan lift 0.89, dengan produk Toothpaste menjadi produk yang paling sering diasosiasikan. Segmentasi pelanggan dilakukan menggunakan algoritma K-Means dengan atribut demografis pelanggan, yaitu Payment Method, Customer Category, Promotion, Season, Discount Applied, dan Store Type. Jumlah klaster optimal ditentukan menggunakan Metode Elbow dan Davies-Bouldin Index (DBI). Hasil menunjukkan k = 3 sebagai jumlah klaster terbaik dengan nilai DBI sebesar 2.4724, yang menandakan pemisahan klaster cukup baik.  Berdasarkan hasil segmentasi K-Means, diperoleh tiga klaster pelanggan dengan karakteristik berbeda, yaitu retiree, teenager, dan profesional. Pengelompokan klaster ini mencerminkan kecenderungan kategori dominan yang muncul pada atribut Customer Category. Integrasi kedua metode ini menghasilkan rekomendasi strategi pemasaran berbasis segmen yang lebih personal, seperti bundling sederhana untuk pelanggan retiree, promosi visual dan hadiah menarik untuk pelanggan teenager, dan sistem poin loyalitas untuk pelanggan profesional. Temuan ini diharapkan membantu pelaku industri ritel memahami perilaku pelanggan secara lebih mendalam dan menyusun strategi pemasaran yang lebih tepat sasaran

Copyrights © 2025






Journal Info

Abbrev

teknosi

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal ini menerbitkan artikel penelitian (research article), artikel telaah/studi literatur (review article/literature review), laporan kasus (case report) dan artikel konsep atau kebijakan (concept/policy article), di semua bidang : Geographical Information System, Enterpise Application, Bussiness ...