Jurnal Informatika Progres
Vol 17 No 2 (2025): September

PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DALAM ANALISIS PEMINJAMAN BARANG PADA DIVISI INVENTARIS TVRI MAKASSAR

Risal (Unknown)
Danuputri, Chyquitha (Unknown)
Darniati (Unknown)
AM Hayat, Muhyiddin (Unknown)



Article Info

Publish Date
04 Sep 2025

Abstract

Inventory management in the TVRI Makassar Inventory Division is inefficient due to the lack of a predictive system, hampering proactive asset requirement planning. This study aims to apply the K-Nearest Neighbor (KNN) algorithm to analyze historical borrowing patterns, predict demand for goods three months in advance, and evaluate model accuracy. Using a quantitative approach, this study implements a systematic machine learning workflow, including data preprocessing, temporal feature engineering, class imbalance handling using the Synthetic Minority Over-sampling Technique (SMOTE), and hyperparameter optimization using GridSearchCV. The results show that the optimized KNN model achieved an overall accuracy of 80.18%, significantly outperforming the baseline model. Key findings revealed that the model's performance is contextual, with very high reliability (F1-Score > 0.95) on frequently borrowed assets, and is able to identify strong temporal demand patterns. It is concluded that KNN is effective for segmented inventory demand prediction and has the potential to serve as a basis for TVRI Makassar to adopt a proactive, data-driven inventory management strategy, enabling more efficient resource allocation.

Copyrights © 2025






Journal Info

Abbrev

Progress

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika Progres merupakan jurnal Blind Peer-Review yang dikelola secara profesional dan diterbitkan oleh P3M STMIK Profesional Makassar dalam upaya membantu peneliti, akademisi, dan praktisi untuk mempublikasikan hasil penelitiannya. Jurnal ini didedikasikan untuk publikasi hasil ...