This paper presents the implementation of a hybrid approach for face recognition attendance systems, combining Convolutional Neural Network (CNN), facial landmark detection, and liveness detection. The CNN model extracts facial features for identity recognition, while facial landmark detection captures dynamic movements such as eye blinking and mouth motion. Liveness detection ensures system robustness against spoofing attempts including photo and video replay. The system was developed using Python with OpenCV, MediaPipe, and TensorFlow, and tested under multiple spoofing scenarios. Results show a detection accuracy of 95.5%, with real-time performance and resilience against common spoofing threats.
                        
                        
                        
                        
                            
                                Copyrights © 2025