Akbar DB, Andi Muhammad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

IMPLEMENTASI HYBRID CNN, FACIAL LANDMARK DAN LIVENESS DETECTION PADA SISTEM ABSENSI WAJAH Akbar DB, Andi Muhammad; Faisal, Muhammad; AM Hayat, Muhyiddin
PROGRESS Vol 17 No 2 (2025): September
Publisher : P3M STMIK Profesional Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56708/progres.v17i2.483

Abstract

This paper presents the implementation of a hybrid approach for face recognition attendance systems, combining Convolutional Neural Network (CNN), facial landmark detection, and liveness detection. The CNN model extracts facial features for identity recognition, while facial landmark detection captures dynamic movements such as eye blinking and mouth motion. Liveness detection ensures system robustness against spoofing attempts including photo and video replay. The system was developed using Python with OpenCV, MediaPipe, and TensorFlow, and tested under multiple spoofing scenarios. Results show a detection accuracy of 95.5%, with real-time performance and resilience against common spoofing threats.