eProceedings of Engineering
Vol. 12 No. 4 (2025): Agustus 2025

Implementasi Model Deep Learning Pada Sistem Deteksi dan Klasifikasi Kualitas Batang Tebu untuk Optimasi Penentuan Kualitas

Siregar , Anggiat Pandu Daniel (Unknown)
Utama, Nur Ichsan (Unknown)
Fa'rifah, Riska Yanu (Unknown)



Article Info

Publish Date
18 Sep 2025

Abstract

Industri gula nasional mengalami penurunan produksi sebesar 7,01% pada tahun 2023, salah satunya disebabkan oleh rendahnya efisiensi pascapanen akibat proses klasifikasi mutu batang tebu yang masih dilakukan secara manual. Proses ini menimbulkan inkonsistensi, potensi konflik antara petani dan petugas lapangan, serta peningkatan biaya operasional. Penelitian ini mengembangkan sistem klasifikasi mutu batang tebu berbasis deep learning menggunakan pendekatan dua tahap. Tahap pertama menggunakan YOLOv11 untuk mendeteksi batang tebu, sedangkan tahap kedua menggunakan arsitektur EfficientNet (B0–B3) untuk mengklasifikasikan mutu ke dalam lima kategori (A–E). Dataset citra diperoleh dari jalur produksi PT Sinergi Gula Nusantara dan diproses melalui tahapan Knowledge Discovery in Database (KDD), meliputi data preprocessing, augmentasi, resizing, dan splitting. Hasil evaluasi menunjukkan bahwa YOLOv11 mencapai akurasi 93,5%, precision 95,7%, recall 94,4%, mAP@0.5 sebesar 97,8%, dan mAP@0.5:0.95 sebesar 89,4%. Sementara itu, EfficientNet-B2 menghasilkan akurasi klasifikasi tertinggi sebesar 88,57% setelah proses fine-tuning. Sistem yang dikembangkan mampu beroperasi pada kondisi visual yang kompleks dan dinamis, serta memberikan hasil klasifikasi yang konsisten. Studi ini menunjukkan potensi teknologi deep learning dalam mendukung otomasi dan peningkatan objektivitas proses penilaian mutu di industri agroindustri. Kata kunci— Deep Learning, EfficientNet, KDD, Klasifikasi Kualitas Batang Tebu, YOLOv11

Copyrights © 2025






Journal Info

Abbrev

engineering

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

Merupakan media publikasi karya ilmiah lulusan Universitas Telkom yang berisi tentang kajian teknik. Karya Tulis ilmiah yang diunggah akan melalui prosedur pemeriksaan (reviewer) dan approval pembimbing ...