This study proposes an artificial intelligence–based approach for automatic identification of the 17th leaf in oil-palm trees (Elaeis guineensis), which serves as a key physiological indicator for nutrient monitoring. The method integrates YOLOv12 object detection with a spatial-positioning algorithm that estimates leaf order through vertical sorting of detected fronds. A total of 1,250 annotated field images were collected from farmer-recorded videos to train and evaluate the system. The proposed model achieved a mean average precision (mAP@0.5) of 92.4% and an average positional error of 10.6 pixels in locating the 17th leaf. Compared with manual identification that requires 3–5 minutes per tree, the automated system performs the entire process in under 15 seconds, providing over 95% time efficiency improvement. This work demonstrates a novel fusion of real-time deep-learning detection and spatial reasoning for nutrient-focused precision agriculture and establishes a practical foundation for scalable, automated leaf indexing in plantation management.
Copyrights © 2025