Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of Deep Learning Convolution Neural Network Method on KRSBI Humanoid R-SCUAD Robot Irfan, Syahid Al; Widodo, Nuryono Satya
Buletin Ilmiah Sarjana Teknik Elektro Vol 2, No 1 (2020): April
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v2i1.985

Abstract

In a soccer game the ability of humanoid robots that one needs to have is to see the ball object in real time. Development of the ability of humanoid robots to see the ball has been developed but the level of accuracy of object recognition and adaptation during matches still needs to be improved. The architecture designed in this study is Convolutional Neural Network or CNN which is designed to have 6 hidden layers with implementation of the robot program using the Tensorflow library. The pictures taken are used in the training process to have 9 types of images based on where the pictures were taken. Each type of image is divided into 2 classes, namely 2000 images for ball object classes and 2000 images for non-ball object classes. The test is done in real time using a white ball on green grass. From the architectural design and white ball detection test results obtained a success rate of 67%, five of the nine models managed to recognize the ball. The model can recognize objects with an image processing speed of a maximum of 13 FPS.Dalam pertandingan sepak bola kemampuan robot humanoid yang perlu dimiliki salah satunya adalah melihat objek bola secara real time. Pengembangan kemampuan robot humanoid untuk melihat bola telah dikembangkan tetapi tingkat akurasi pengenalan objek dan adaptasi saat pertandingan masih perlu ditingkatkan. Arsitektur yang dirancang pada penelitian ini yaitu Convolutional Neural Network atau CNN yang dirancang memiliki 6 hidden layer dengan implementasi pada program robot menggunakan library Tensorflow. Gambar yang diambil digunakan dalam proses training memiliki 9 jenis gambar berdasarkan tempat pengambilan gambar. Tiap jenis gambar terbagi menjadi 2 class yaitu 2000 gambar untuk class objek bola dan 2000 gambar untuk class objek bukan bola. Pengujian dilakukan secara real time dengan menggunakan bola berwarna putih di atas rumput hijau. Dari perancangan arsitektur dan hasil pengujian pendeteksian bola putih didapatkan persentase keberhasilan 67% yaitu lima dari sembilan model berhasil mengenali bola. Model dapat mengenali objek dengan kecepatan pengolahan gambar adalah maksimal 13 FPS.
Automated Identification of Oil Palm’s 17th Leaf Using YOLOv12 and Spatial Positioning Rahmawan, Jihad; Yuliansyah, Herman; Yudhana, Anton; Irfan, Syahid Al
Innovation in Research of Informatics (Innovatics) Vol 7, No 2 (2025): September 2025
Publisher : Department of Informatics, Siliwangi University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37058/innovatics.v7i2.15766

Abstract

This study proposes an artificial intelligence–based approach for automatic identification of the 17th leaf in oil-palm trees (Elaeis guineensis), which serves as a key physiological indicator for nutrient monitoring. The method integrates YOLOv12 object detection with a spatial-positioning algorithm that estimates leaf order through vertical sorting of detected fronds. A total of 1,250 annotated field images were collected from farmer-recorded videos to train and evaluate the system. The proposed model achieved a mean average precision (mAP@0.5) of 92.4% and an average positional error of 10.6 pixels in locating the 17th leaf. Compared with manual identification that requires 3–5 minutes per tree, the automated system performs the entire process in under 15 seconds, providing over 95% time efficiency improvement. This work demonstrates a novel fusion of real-time deep-learning detection and spatial reasoning for nutrient-focused precision agriculture and establishes a practical foundation for scalable, automated leaf indexing in plantation management.