Bulletin of Electrical Engineering and Informatics
Vol 14, No 5: October 2025

An internet of things-based weather system for short-term solar and wind power forecasting using double moving average

Syafii, Syafii (Unknown)
Nur Izrillah, Imra (Unknown)
Aulia, Aulia (Unknown)
Ilhamdi Rusydi, Muhammad (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

This article presents the design and implementation of an internet of things (IoT)-based weather forecasting system aimed at optimizing operational planning for renewable energy generation. The system leverages a Raspberry Pi as its central controller, integrating pyranometer and anemometer sensors for real-time data collection and predictive analytics. Utilizing the double moving average method, the system provides accurate short-term forecasts of solar and wind power outputs, which are crucial for addressing the intermittency challenges of renewable energy sources. The integration with the Blynk platform ensures user-friendly data visualization and accessibility. Results from a three-day testing phase reveal the system's high accuracy, with prediction errors of 8.79% for solar power and 16.49% for wind power. These findings underscore the system's potential to enhance energy planning, improve efficiency, and support sustainability goals. By enabling data-driven decision-making, this IoT-based forecasting system offers a scalable solution for advancing renewable energy integration into the power grid.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...