Algoritme Jurnal Mahasiswa Teknik Informatika
Vol 6 No 1 (2025): Oktober 2025 || Algoritme Jurnal Mahasiswa Teknik Informatika

Perbandingan Algoritma Naïve Bayes dan Random Forest untuk Klasifikasi Intent Chatbot Layanan Pelanggan

Meinita, Rizkia (Unknown)
Fardian Anshori, Iedam (Unknown)



Article Info

Publish Date
10 Oct 2025

Abstract

In recent years, chatbots have become one of the key innovations in customer service due to their ability to provide fast, accurate, and consistent responses. However, selecting the most suitable machine learning algorithm to accurately classify customer inquiries remains a challenge. This study compares the Naïve Bayes and Random Forest algorithms in intent classification for an Indonesian language-based customer service chatbot. Using a dataset of 26,873 conversations processed through preprocessing stages and TF-IDF vectorization, the evaluation results show that Random Forest achieved an accuracy of 96%, compared to 95% for Naïve Bayes, although both yielded nearly similar precision, recall, and f1-score values. These findings highlight that both algorithms remain relevant, but Random Forest delivers more consistent performance in improving classification accuracy. Practically, this research provides a reference for selecting algorithms in developing customer service chatbots that are more efficient, accurate, and adaptive to user needs, thereby enhancing interaction quality and reducing the workload of human operators.

Copyrights © 2025






Journal Info

Abbrev

algoritme

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritme menjadi sarana publikasi artikel hasil temuan Penelitian orisinal atau artikel analisis. Bahasa yang digunakan jurnal adalah bahasa Inggris atau bahasa Indonesia. Ruang lingkup tulisan harus relevan dengan disiplin ilmu seperti: - Machine Learning - Computer Vision, - Artificial ...