Algoritme Jurnal Mahasiswa Teknik Informatika
Vol 5 No 3 (2025): Oktober 2025 || Algoritme Jurnal Mahasiswa Teknik Informatika

Perbandingan Kinerja Support Vector Machine Dan Random Forest Untuk Klasifikasi Sentimen Pengguna Aplikasi Gojek Dengan Optimasi Smote

Rihastuti, Siti (Unknown)
Rosyidi, Afnan (Unknown)



Article Info

Publish Date
10 Oct 2025

Abstract

This study compares the performance of Support Vector Machine (SVM) and Random Forest in classifying Gojek user sentiment using 2,000 Indonesian-language reviews (1,351 positive, 566 negative, 83 neutral). After data preprocessing and TF-IDF feature extraction, SMOTE was applied to balance the training data in each fold. Using Stratified K-Fold Cross-Validation, results showed that Random Forest achieved higher and more consistent accuracy (84.1%) than SVM (76.1%). The Paired t-test and McNemar’s Test (p-value < 0.05) confirmed that the Random Forest’s superiority was statistically significant. Overall, both models were effective, but Random Forest performed better for Gojek sentiment classification, supporting user satisfaction monitoring and complaint detection.

Copyrights © 2025






Journal Info

Abbrev

algoritme

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritme menjadi sarana publikasi artikel hasil temuan Penelitian orisinal atau artikel analisis. Bahasa yang digunakan jurnal adalah bahasa Inggris atau bahasa Indonesia. Ruang lingkup tulisan harus relevan dengan disiplin ilmu seperti: - Machine Learning - Computer Vision, - Artificial ...