International Journal of Informatics Engineering and Computing
Vol. 1 No. 2 (2024): International Journal of Informatics Engineering and Computing

Detecting Acute Liver Diseases Using CNN Algorithm

Anjani, Sarah (Unknown)
Maria Yohana Jawa Betan (Unknown)



Article Info

Publish Date
18 Nov 2024

Abstract

This study tackles the critical challenge of detecting Acute Liver Failure (ALF) using machine learning algorithms. The main goal is to assess the effectiveness of several algorithms, including Convolutional Neural Network (CNN), Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and Gradient Boosting, in accurately classifying cases of ALF. For this purpose, a comprehensive dataset with 8,785 records and 30 features from Kaggle is utilized, involving thorough preprocessing steps like feature selection, data cleaning, and normalization. The research emphasizes achieving high precision in ALF detection. Results show that CNN outperforms other algorithms, achieving a precision score of 1.00 for identifying ALF cases, demonstrating its high reliability. This study highlights the importance of algorithm selection in complex medical diagnoses, showcasing the potential of deep learning methods in healthcare and paving the way for more accurate and timely ALF detection to improve patient outcomes.

Copyrights © 2024






Journal Info

Abbrev

ijimatic

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics Engineering and Computing (IJIMATIC) is an international, peer-reviewed, open-access journal that publishes original theoretical and empirical work on the science of informatics and its application in multiple fields. Our concept of informatics encompasses ...