Wajah merupakan komponen yang paling mudah dikenali dan sering kali menjadi pusat perhatian dalam tubuh manusia. Sering terjadinya kesulitan dalam membedakan dan menganalisis citra wajah dengan jumlah yang banyak secara manual karena banyaknya kemiripan antara laki-laki dan perempuan sehingga memperlambat proses identifikasi jenis kelamin. Tujuan dari penelitian ini yaitu menerapkan TensorFlow dalam pengembangan model CNN untuk memprediksi jenis kelamin dari gambar wajah. Penelitian ini diharapkan dapat memberikan wawasan tentang efektivitas penggunaan algoritma CNN dalam pengenalan gambar. Penelitian ini menggunakan pendekatan eksperimen dengan dataset gambar wajah yang mencakup individu laki-laki dan perempuan yang terbagi menjadi data train dan validation untuk prediksi jenis kelamin. Model dilatih dengan teknik deep learning, dan menggunakan algoritma CNN kemudian evaluasi menggunakan confusion matrix, precision, recall, F1-score, dan accuracy. Berdasarkan hasil dari pelatihan model sebanyak 8 Epoch menunjukan semua gambar wajah dapat diproses untuk mendeteksi gender dengan nilai Pengujian identifikasi tingkat accuracy sebesar 0.92 dan loss sebesar 0.28. hasil penelitian dengan menggunakan metode ini dapat meningkatkan kinerja sistem pengenalan wajah berdasarkan jenis kelamin secara praktis. Selain itu, penelitian ini juga memberikan rekomendasi untuk meningkatkan akurasi lebih lanjut dan eksplorasi teknologi terkini dalam upaya mengoptimalkan aplikasi pengenalan gender di masa depan.
Copyrights © 2025