Deteksi dini penyakit kulit merupakan langkah penting dalam upaya pencegahan dan penanganan dini penyakit berbahaya seperti melanoma. Penelitian ini bertujuan untuk mengembangkan model deteksi otomatis penyakit kulit berbasis citra dengan menggabungkan Local Binary Pattern (LBP) dan Dropout Convolutional Neural Network (CNN). Dataset yang digunakan adalah HAM10000, yang terdiri dari berbagai jenis citra lesi kulit beresolusi tinggi. Proses penelitian meliputi tahapan preprocessing (normalisasi, cropping, dan augmentasi), ekstraksi ciri tekstur menggunakan LBP, serta klasifikasi menggunakan CNN dengan mekanisme dropout untuk mencegah overfitting. Model dievaluasi menggunakan metrik Accuracy, Precision, Recall, dan F1-Score. Hasil penelitian menunjukkan bahwa kombinasi LBP + Dropout CNN memberikan peningkatan signifikan dibandingkan CNN konvensional. Model usulan berhasil mencapai akurasi sebesar 99.45%, precision 99.21%, recall 99.43%, dan F1-Score 99.32%. Penerapan LBP meningkatkan kemampuan model dalam mengenali tekstur mikro pada permukaan kulit, sedangkan dropout meningkatkan kemampuan generalisasi model. Dengan hasil tersebut, metode yang diusulkan terbukti efektif untuk deteksi dini penyakit kulit secara otomatis dan berpotensi diterapkan dalam sistem Computer-Aided Diagnosis (CADx) berbasis kecerdasan buatan, baik di lingkungan klinis maupun aplikasi mobile untuk deteksi mandiri.
Copyrights © 2025