Smartphones have become an integral part of everyday life, but their ever-increasing popularity has raised growing global concerns about excessive use (nomophobia), which impacts quality of life, mental health, and academic performance. Existing research often relies on subjective questionnaires, limiting scalability and objectivity. This study addresses this gap by developing a machine learning model to predict smartphone addiction levels through an objective analysis of user behavior patterns. This research evaluates the effectiveness of the K-Nearest Neighbor (KNN) algorithm, identifies the most influential behavioral features, and assesses the model's classification performance. Using a dataset of 3,300 user behavior entries with 11 features, a waterfall-based framework was employed for data preprocessing, model design, and evaluation. The KNN model achieved 95% accuracy in classifying addiction levels. Permutation Feature Importance analysis confirmed ‘App Usage Time’ and ‘Battery Drain’ as the two most influential predictive features. This study demonstrates that KNN is a powerful and viable method for objectively classifying smartphone addiction. The findings provide a strong foundation for developing scalable, AI-driven early detection and intervention systems, offering significant contributions to the fields of computer science and digital well-being.
Copyrights © 2025