Chronic Kidney Disease (CKD) is a progressive medical disorder that requires timely and precise identification to avoid permanent impairment of kidney function. However, Decision Tree models, although widely used in clinical applications due to their transparency, ease of implementation, and ability to handle both categorical and numerical data, are prone to overfitting and instability when applied to small or imbalanced datasets. The purpose of this study is to optimize CKD classification by integrating Bootstrap Aggregating (Bagging) with Decision Tree to enhance accuracy and robustness. The methodology involves testing two model variants a standalone Decision Tree and a Bagging-supported Decision Tree using 10-fold cross-validation and evaluating performance with accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC-ROC). Findings reveal that Bagging enhances model accuracy from 0.980 to 0.987, raises precision from 0.976 to 1.000, and improves recall from 0.954 to 0.954, and increases F1-score from 0.965 to 0.976. These results demonstrate that Bagging significantly improves the reliability and generalizability of Decision Tree classifiers, making them more effective for CKD prediction.
Copyrights © 2025