Indonesian Journal of Electronics and Instrumentation Systems
Vol 15, No 2 (2025): October

Perbandingan Algoritma SVM Dan CNN Untuk Klasifikasi Citra Batik Nitik

Fatrawijaya, Imam (Unknown)
Tyas, Dyah Aruming (Unknown)



Article Info

Publish Date
31 Oct 2025

Abstract

Di Indonesia, berbagai motif batik tersebar di seluruh daerah sehingga menyulitkan untuk mengidentifikasi motif-motif tersebut. Kesalahan dalam klasifikasi motif batik akan menyebabkan misinformasi sehingga informasi tentang motif batik tidak tersampaikan dengan baik. Hal ini bisa menjadi penghambat dalam pengenalan berbagai motif batik secara digital. Motif batik dapat diklasifikasikan dengan metode machine learning atau deep learning. Algoritma yang banyak digunakan pada masing-masing metode tersebut adalah  Support Vector Machine (SVM) dan Convolutional Neural Network (CNN) yang dapat digunakan untuk membantu mengenali  dan mengidentifikasi motif batik.  SVM dan CNN akan melakukan pemodelan dengan menggunakan dataset batik nitik 960 kemudian membandingkan performa kedua model. Dataset batik nitik terdiri dari 960 data citra yang terbagi kedalam 60 kelas. SVM dibangun dengan menggunakan ekstraksi fitur color moment dan MTCD, sedangkan CNN menggunakan arsitektur VGG16 pretrained. Berdasarkan hasil analisis matriks evaluasi seperti akurasi, presisi, recall, dan F1-score  model CNN dengan arsitektur VGG16 mendapatkan akurasi konsisten di angka 100% pada data testing dengan nilai learning rate = 0,001. Sedangkan SVM mendapatkan akurasi yang bervariasi pada beberapa pengujian berdasarkan pembagian jumlah dataset.

Copyrights © 2025






Journal Info

Abbrev

ijeis

Publisher

Subject

Electrical & Electronics Engineering

Description

IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), a two times annually provides a forum for the full range of scholarly study. IJEIS scope encompasses all aspects of Electronics, Instrumentation and Control. IJEIS is covering all aspects of Electronics and Instrumentation ...