Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Vol. 16 No. 2 (2025): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi

Evaluating Contextual Embedding Models for Multi-Label PICO Classification in Heart Disease: Addressing the Intervention - Comparison Bottleneck

Taslim, Taslim (Unknown)
Handayani, Susi (Unknown)
Walhidayat, Walhidayat (Unknown)
Toresa, Dafwen (Unknown)



Article Info

Publish Date
24 Oct 2025

Abstract

Accurate extraction of Population, Intervention, Comparison, and Outcome (PICO) elements from clinical texts is essential for supporting evidence-based medicine, particularly in cardiology where clinical data complexity presents significant challenges. This study investigates the comparative effectiveness of three contextual embedding models—BioBERT, PubMedBERT, and SciBERT—integrated with a Bidirectional Long Short-Term Memory (BiLSTM) architecture for multi-label PICO element classification on heart disease datasets. The experimental framework involved pre-processing clinical sentences, transforming them into contextual embeddings, and classifying PICO elements using BiLSTM-based sequence modeling. Evaluation was conducted using five key metrics: accuracy, precision, recall, F1-score, and hamming loss, supplemented by confusion matrix analysis for each PICO element. Results demonstrate that the BioBERT-BiLSTM model achieved superior performance, with an accuracy of 73.89%, F1-score of 78.54%, precision of 81.60%, and recall of 76.64%. PubMedBERT-BiLSTM exhibited the highest precision (84.12%) but lower recall, while SciBERT-BiLSTM produced slightly inferior results overall. These findings confirm the importance of using domain-specific embeddings, particularly models pre-trained on biomedical corpora, to improve classification accuracy in specialized clinical text tasks. This study concludes that the BioBERT-BiLSTM combination offers a reliable approach for automated PICO element extraction in the cardiology domain, contributing to the development of more accurate and efficient clinical decision-support systems

Copyrights © 2025






Journal Info

Abbrev

dz

Publisher

Subject

Computer Science & IT Engineering

Description

Digital Zone journal publish by Fakultas Ilmu Komputer Universitas Lancang Kuning (Online ISSN 2477-3255 and Print ISSN 2086-4884) This journal publish two periode in a year on May and ...