Indonesia is one of the countries with the highest earthquake vulnerability in the world because it is located at the meeting point of three major tectonic plates, namely Eurasia, Indo-Australia, and Pacific. The high risk of disaster requires a system that is capable of analyzing, predicting, and recommending earthquake-prone areas accurately, efficiently, and safely. This study aims to develop an earthquake risk recommendation system based on the integration of Artificial Intelligence (AI), Multi-Criteria Decision Making (MCDM), and Ethereum Blockchain. Earthquake data was obtained from Google Earth Engine (GEE) and geospatial data from the Geospatial Information Agency (BIG) and BMKG. The data is processed using AI algorithms for predictive analysis, then the MCDM methods of TOPSIS, and ELECTRE are applied to determine the priority of earthquake-prone areas based on a combination of seismic parameters, population density, infrastructure vulnerability, and distance to active faults. The analysis results are stored in a decentralized manner using the Ethereum Blockchain through smart contracts to ensure data integrity, security, and transparency. The research results show that the integration of AI–MCDM is capable of providing earthquake risk recommendations with high accuracy, while the application of blockchain ensures that the results cannot be manipulated. This system is expected to become a decision-making tool for disaster management agencies such as BMKG and BNPB in data-based earthquake risk mitigation.
Copyrights © 2025