Widianto, Aditya
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

MCDM-Based Blockchain and Artificial Intelligence Integration for Earthquake Risk Recommendation System Widianto, Aditya; Sari, Ratih Titi Komala; Hindarto , Djarot; Sani, Asrul
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15437

Abstract

Indonesia is one of the countries with the highest earthquake vulnerability in the world because it is located at the meeting point of three major tectonic plates, namely Eurasia, Indo-Australia, and Pacific. The high risk of disaster requires a system that is capable of analyzing, predicting, and recommending earthquake-prone areas accurately, efficiently, and safely. This study aims to develop an earthquake risk recommendation system based on the integration of Artificial Intelligence (AI), Multi-Criteria Decision Making (MCDM), and Ethereum Blockchain. Earthquake data was obtained from Google Earth Engine (GEE) and geospatial data from the Geospatial Information Agency (BIG) and BMKG. The data is processed using AI algorithms for predictive analysis, then the MCDM methods of TOPSIS, and ELECTRE are applied to determine the priority of earthquake-prone areas based on a combination of seismic parameters, population density, infrastructure vulnerability, and distance to active faults. The analysis results are stored in a decentralized manner using the Ethereum Blockchain through smart contracts to ensure data integrity, security, and transparency. The research results show that the integration of AI–MCDM is capable of providing earthquake risk recommendations with high accuracy, while the application of blockchain ensures that the results cannot be manipulated. This system is expected to become a decision-making tool for disaster management agencies such as BMKG and BNPB in data-based earthquake risk mitigation.
PEMANFAATAN VIRGIN COCONUT OIL SEBAGAI FOAMING AGENT PADA BETON RINGAN Afifah, Salmi; Apriana, Ria; Widianto, Aditya; Wahyuni, Wulan Tri
Analit : Analytical and Environmental Chemistry Vol. 6, No. 02 October (2021) Analit : Analytical and Environmental Chemistry
Publisher : Jurusan Kimia FMIPA Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/aec.v6i2.2021.p156-167

Abstract

Foaming agent dapat disintesis dengan mereaksikan asam lemak dari minyak nabati seperti asam laurat dari virgin coconut oil (VCO) dengan alkali. Foaming agent dari asam laurat VCO berpotensi sebagai salah satu aternatif pengganti foaming agent sintetik yang sulit terdegradasi. Penelitian ini bertujuan memformulasi foaming agent berbahan dasar VCO untuk menguji efektivitas kinerja foaming agent yang dihasilkan dalam aplikasi pembuatan beton ringan. Pemisahan asam laurat dari VCO menggunakan metode saponifikasi menggunakan NaOH 3,5 N. Formulasi foaming agent (K-laurat) dilakukan dengan mencampurkan asam laurat dengan KOH 30% b/v pada perbandingan 1:0,5. Hasil yang diperoleh menunjukkan rendemen asam laurat dari VCO adalah sebesar 69,1% v/v sementara foaming agent berupa K-laurat yang diperoleh adalah sebanyak 738 g. Foaming agent yang dihasilkan memiliki pH 8,15, densitas 0,9976 g/mL, viskositas 5,43 cP, dan sudut kontak 35,81o. Kinerja foaming agent menunjukkan stabilitas busa sebesar 84,4−87,5%, kemampuan pembusaan sebesar 385−533% selama 45 menit, serta diameter busa sebesar 4,3−64,8 μm. Beton ringan yang dibuat dengan foaming agent dari asam laurat VCO memiliki tekstur sedikit kasar, berpori dan mengeras setelah 1 hari. Kinerja beton ringan yang dihasilkan memiliki densitas 1497,91 kg/m3 dan kuat tekan 2,8033 MPa.http://dx.doi.org/10.23960/aec.v6.i2.2021.p156-167