Perkembangan teknologi digital menuntut perguruan tinggi untuk menghadirkan layanan akademik yang cepat, tepat, dan responsif. Universitas Negeri Surabaya (Unesa) melalui platform E-Layanan memberikan sarana bagi civitas akademika untuk menyampaikan keluhan terkait kendala penggunaan sistem informasi dan jaringan. Namun, proses klasifikasi tingkat urgensi keluhan masih dilakukan secara manual oleh admin, yang berpotensi menyebabkan keterlambatan penanganan, inkonsistensi penilaian, serta meningkatnya beban kerja. Penelitian ini bertujuan untuk mengembangkan sistem otomatisasi klasifikasi tingkat urgensi keluhan dengan memanfaatkan Term Frequency-Inverse Document Frequency (TF-IDF) sebagai representasi fitur teks, serta Logistic Regression berbobot (class_weight) sebagai model klasifikasi utama. Dataset yang digunakan terdiri dari 79.303 keluhan, dibagi menjadi data latih (70%), validasi (15%), dan uji (15%). Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, F1-score, dan confusion matrix. Hasil penelitian menunjukkan bahwa kombinasi TF-IDF dan Logistic Regression berbobot mampu memberikan kinerja yang baik dengan akurasi 92,54% pada data uji. Selain itu, model menunjukkan kemampuan yang tinggi dalam mendeteksi keluhan kritis secara akurat, memastikan prioritas penanganan terjaga secara optimal. Temuan ini menegaskan bahwa penerapan model berbasis pembelajaran mesin dapat meningkatkan efisiensi operasional dan konsistensi klasifikasi dibandingkan pendekatan manual. Sistem yang dikembangkan diharapkan dapat diintegrasikan lebih lanjut ke dalam platform E-Layanan Unesa, mendukung proses penanganan keluhan secara otomatis dan real-time, serta membantu administrasi fokus pada resolusi masalah yang paling mendesak.
Copyrights © 2025