Proceeding of the Electrical Engineering Computer Science and Informatics
Vol 4: EECSI 2017

Opinion Detection of Public Sector Financial Statements Using K-Nearest Neighbors

Ahmad Dwi Arianto (Unknown)
Achmad Affandi (Unknown)
Supeno Mardi Susiki Nugroho (Unknown)



Article Info

Publish Date
01 Nov 2017

Abstract

The identification of ethical violations committedby the auditor is very difficult to do. Artificial intelligence offersanomaly detection as an alternative method for detecting theopinion anomaly which can be an early indicator of the opiniontrading occurrence. This paper proposes the use of originalfeatures from public sector rather than the use of modifiedfeatures from the private sector to be applied in opinion detectionin public sector. By using 60% Holdout validation, 1-NNclassification showed that original featured from the public sectoroutperformed the modified featured from the private sector by5.82% through 13.10% under F-Measure Criterion and by4.22% through 9.56% under AUC criterion.

Copyrights © 2017






Journal Info

Abbrev

EECSI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Proceeding of the Electrical Engineering Computer Science and Informatics publishes papers of the "International Conference on Electrical Engineering Computer Science and Informatics (EECSI)" Series in high technical standard. The Proceeding is aimed to bring researchers, academicians, scientists, ...