Di era digital, transaksi keuangan semakin beralih ke metode nontunai, karena sifatnya yang nyaman dan efisien. Namun, peningkatan penggunaan kartu kredit dan transaksi online juga meningkatkan risiko kejahatan finansial. Penelitian ini mengkaji metode ensemble learning dan random oversampling dalam mendeteksi anomali pada transaksi keuangan, khususnya penipuan kartu kredit. Algoritma klasifikasi yang digunakan meliputi Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), dan Naive Bayes (NB), dengan pendekatan ensemble learning seperti Bagging, Boosting, dan Stacking. Hasil penelitian menunjukkan bahwa metode ensemble learning secara signifikan meningkatkan performa deteksi penipuan dibandingkan model dasar (base model). Khususnya teknik stacking menunjukkan peningkatan AUC yang signifikan, dengan beberapa algoritma mencapai AUC sempurna (1.00). Random Forest (RF) dengan metode ensemble learning menunjukkan performa yang sangat konsisten dan optimal dalam mendeteksi anomali penipuan. Penelitian ini menegaskan bahwa metode ensemble learning, terutama stacking, efektif dalam membedakan antara transaksi sah dan mencurigakan, sehingga dapat diandalkan untuk deteksi penipuan keuangan.
Copyrights © 2024