TEKNIK INFORMATIKA
Vol. 17 No. 1: JURNAL TEKNIK INFORMATIKA

SVM Optimization with Grid Search Cross Validation for Improving Accuracy of Schizophrenia Classification Based on EEG Signal

Desiawan, Masdar (Unknown)
Solichin, Achmad (Unknown)



Article Info

Publish Date
20 May 2024

Abstract

The advantage of the Support Vector Machine (SVM) is that it can solve classification and regression problems both linearly and non-linearly. SVM also has high accuracy and a relatively low error rate. However, SVM also has weaknesses, namely the difficulty of determining optimal parameter values, even though setting exact parameter values affects the accuracy of SVM classification. Therefore, to overcome the weaknesses of SVM, optimizing and finding optimal parameter values is necessary. The aim of this research is SVM optimization to find optimal parameter values using the Grid Search Cross-Validation method to increase accuracy in schizophrenia classification. Experiments show that optimization parameters always find a nearly optimal combination of parameters within a specific range. The results of this study show that the level of accuracy obtained by SVM with the grid search cross-validation method in the schizophrenia classification increased by 9.5% with the best parameters, namely C = 1000, gamma = scale, and kernel = RBF, the best parameters were applied to the SVM algorithm and obtained an accuracy of 99.75%, previously without optimizing the accuracy reached 90.25%. The optimal parameters of the SVM obtained by the grid search cross-validation method with a high degree of accuracy can be used as a model to overcome the classification of schizophrenia.

Copyrights © 2024






Journal Info

Abbrev

ti

Publisher

Subject

Computer Science & IT

Description

Jurnal Teknik Informatika merupakan wadah bagi insan peneliti, dosen, praktisi, mahasiswa dan masyarakat ilmiah lainnya untuk mempublikasikan artikel hasil penelitian, rekayasa dan kajian di bidang Teknologi Informasi. Jurnal Teknik Informatika diterbitkan 2 (dua) kali dalam ...