Transformasi digital treasury dalam pengelolaan keuangan negara memerlukan pendekatan berbasis data untuk meningkatkan akuntabilitas APBN. Indikator Kinerja Pelaksanaan Anggaran (IKPA) menjadi instrumen utama dalam mengukur kinerja anggaran pada satuan kerja. Namun, dari delapan indikator penyusun IKPA, selama tiga tahun terakhir, komponen deviasi halaman III DIPA menunjukkan nilai terendah, mengindikasikan adanya tantangan dalam akurasi perencanaan dan eksekusi anggaran. Penelitian ini membandingkan tiga model prediktif berbasis artificial intelligence untuk meramalkan nilai indikator deviasi halaman III DIPA: SARIMA (Seasonal Autoregressive Integrated Moving Average) yang handal dalam menangkap pola musiman, XGBoost (Extreme Gradient Boosting) yang unggul dalam optimasi gradien, dan Random Forest yang kuat dalam menangani kompleksitas data. Dataset mencakup observasi bulanan nilai indikator deviasi halaman III DIPA dari Januari 2022 sampai dengan September 2024, memberikan dasar yang komprehensif untuk analisis time series. Metodologi penelitian menerapkan pendekatan kuantitatif dengan preprocessing data, pemilihan fitur, dan validasi silang untuk memastikan robustness model. Evaluasi performa menggunakan metrik MAE, RMSE, dan MAPE. Temuan penelitian mengungkapkan bahwa Model SARIMA memberikan akurasi prediksi tertinggi dengan error rate terendah. Kontribusi penelitian ini signifikan dalam dua aspek: pengembangan early warning system untuk deviasi anggaran dan penyediaan tools pendukung keputusan berbasis AI untuk perencanaan anggaran yang lebih akurat. Implementasi model ini diharapkan dapat membantu satuan kerja meningkatkan nilai IKPA mereka secara keseluruhan.
Copyrights © 2025