Bulletin of Electrical Engineering and Informatics
Vol 14, No 2: April 2025

Shallot disease classification system based on deep learning

Lidyawati, Lita (Unknown)
Darlis, Arsyad Ramadhan (Unknown)
Munawaroh, Sofa Jauharotul (Unknown)



Article Info

Publish Date
01 Apr 2025

Abstract

Shallot is one of the important horticultural commodities for society and has high economic value. The problem with shallot cultivation is disease attacks on plants, one of which is Fusarium wilt. With the condition that the shallot commodity at the farmer level has a high failure rate, it is hoped that this research can assist farmers in providing information about shallot plants that have diseased plant characteristics using deep learning system convolutional neural network (CNN) method by utilizing leaf images on shallot plants. This research was conducted using the ResNet-18 architecture, with a total of 400 data in the dataset divided into 2 categories, namely healthy and diseased Fusarium wilt. The device used to carry out the classification process in this research is a Jetson Nano 2 GB. The ratio used to form a model from the dataset is 80-20 (80% training data and 20% validation data). The accuracy results for the classification of shallot plant diseases using real-time leaf images during the day have an average accuracy value of 68% on healthy plants and 62% on Fusarium wilt plants, while at night it has an average accuracy value of 53% on healthy plants and 47% on Fusarium wilt plants.

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...