Infotech: Journal of Technology Information
Vol 11, No 2 (2025): NOVEMBER

ANALISIS KINERJA ALGORITMA MACHINE LEARNING DALAM MENDETEKSI ANOMALI KETINGGIAN AIR LAUT: STUDI PERBANDINGAN ONE-CLASS SVM DAN ISOLATION FOREST

Alifandra, Dhafa (Unknown)
Pratiwi, Nunik (Unknown)



Article Info

Publish Date
04 Nov 2025

Abstract

This study aims to compare the performance of two machine learning algorithms for anomaly detection One-Class SVM and Isolation Forest in identifying anomalies in sea level data in Indonesia, a region with high tsunami risk. The data were obtained from an official Indonesian government source over a one-year period and underwent preprocessing, including data cleaning and standardization. The models were evaluated using statistical analysis (Mann-Whitney U test), clustering metrics (Davies-Bouldin Index and Silhouette Score), and visual inspection. The results indicate that Isolation Forest outperformed the other algorithm with a Davies-Bouldin Index of 0.8124, while One-Class SVM achieved the highest Silhouette Score at 0.4381, although its Davies-Bouldin Index was higher at 0.9163. This study contributes to the selection of effective algorithms for ocean monitoring systems as part of disaster mitigation strategies in Indonesia.

Copyrights © 2025






Journal Info

Abbrev

infoteh

Publisher

Subject

Computer Science & IT

Description

Jurnal Infotech adalah jurnal ilmiah yang berisi hasil penelitian yang ditulis oleh dosen, peneliti dan praktisi. Jurnal ini diharapkan untuk mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian di bidang Teknologi Informasi dan Ilmu Komputer. ...