The large number of textual documents in the medical field makes it very difficult for readers to obtain comprehensive information. Users usually use a query approach to get the desired information. Using the correct query will produce relevant information. In the existing discriminative marginalized probabilistic neural method, referred to as DAMEN, used for multi-document summarization, a background sentence query is used to retrieve the top-K relevant documents and then generate a summary of these documents. However, the background sentence query used to retrieve the top-K documents did not provide accurate summary results. The author improved the DAMEN model by adding a keyword extraction process to the query background sentence. We call this model Q-DAMEN. Our model shows significant improvement over the original DAMEN method, with the best results achieved by the variation of using a keyword query entered into the discriminator component and a background sentence query entered into the generator component. The multipartieRank keyword extraction method shows the best results with a Rouge-1 value of 29.12, Rouge-2 of 0.79, and Rouge-L of 15.53. The results demonstrate that the more accurate the keywords extracted from the sentence background query, the more accurate the multi-document summaries generated.
Copyrights © 2025