Jurnal Ilmu Komputer
Vol 3 No 1 (2025): Jurnal Ilmu Komputer (Edisi Juli 2025)

Analisis Tipe Kecerdasan Majemuk Siswa Sekolah Dasar Berbasis Catatan Perilaku Menggunakan Algoritma Naive Bayes, K-Nearest Neighbors, dan Support Vector Machine

Nursalam, Asep Herman (Unknown)
Agung Budi Susanto (Unknown)
Taswanda Taryo (Unknown)



Article Info

Publish Date
31 Jul 2025

Abstract

This study aims to identify the types of multiple intelligences of elementary school students based on Howard Gardner's theory by utilizing machine learning algorithms, namely Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The data used comes from student behavior records and intelligence type questionnaires obtained from students or parents. The SEMMA method (Sample, Explore, Modify, Model, Assess) is used, including text preprocessing and TF-IDF feature extraction. The classification process is carried out using Orange Data Mining software and evaluated using accuracy, precision, recall, F1-score, and AUC metrics. The evaluation results show that the SVM algorithm provides the best performance with an accuracy of 93.30% and AUC of 0.997. Naive Bayes follows with 90.50% accuracy and 0.994 AUC, while KNN reaches 89.50% accuracy and 0.941 AUC. The study also results in a web-based application prototype that classifies students' intelligence types and provides personalized learning recommendations. This confirms the effectiveness of machine learning in supporting personalized learning and student potential development.

Copyrights © 2025






Journal Info

Abbrev

jikom

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal Ilmu Komputer merupakan jurnal ilmiah dalam bidang Ilmu Komputer, Informatika, IoT, Network Security dan Digital Forensics yang diterbitkan secara konsisten oleh Program Studi Teknik Informatika S-2, Program Pascasarjana, Universitas Pamulang, Indonesia. Tujuan penerbitannya adalah untuk ...