Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)
Vol 10 No 1 (2026): JANUARY 2026

Pengaruh Optimasi Hyperparameter Random Forest terhadap Akurasi Prediksi Magnitudo Gempa Bumi Berdasarkan Hasil Klasterisasi DBSCAN

Prasetyo, Rizky Dwi (Unknown)
Maori, Nadia Anissa (Unknown)
Zyen, Akhmad Khanif (Unknown)



Article Info

Publish Date
01 Jan 2026

Abstract

Indonesia is a country with high seismic activity due to its location at the convergence of three major tectonic plates. This condition creates a strong need for earthquake pattern analysis and magnitude prediction to support disaster mitigation. This study aims to cluster earthquake data using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and to predict earthquake magnitude using the Random Forest algorithm optimized through hyperparameter tuning. The Indonesian earthquake dataset was obtained from Kaggle with a total of 92,887 valid entries. The DBSCAN clustering results revealed several active seismic zones, particularly in Sumatra, Java, Sulawesi, and Papua. The comparison of R² between the Baseline Random Forest and the Tuned Random Forest shows a significant improvement after the parameter tuning process. The Tuned Random Forest model achieves an R² value of 0.478, which is higher than the Baseline Random Forest's 0.442. This indicates that the tuned model is better able to explain the variance in the data and provides more accurate predictions.

Copyrights © 2026






Journal Info

Abbrev

jtik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), e-ISSN: 2580-1643 is a free and open-access journal published by the Research Division, KITA Institute, Indonesia. JTIK Journal provides media to publish scientific articles from scholars and experts around the world related to Hardware ...