The background of this research focuses on the development of a quantum noise-based Quantum Random Number Generator (QRNG) to generate random numbers that are safer and more efficient compared to conventional methods. Quantum fluctuation-based QRNG has the potential to generate more unpredictable numbers, improving security in cryptographic and simulation applications. The purpose of this research is to develop a QRNG system that can generate high-quality random numbers with various experimental settings and conditions. The method used is an experiment measuring quantum fluctuations through a photon detector to generate a random number based on quantum noise, followed by statistical testing to test the quality of the randomness. The results show that quantum noise-based QRNG is able to generate random numbers with better quality than conventional random number generators, with p-values that indicate very high random uncertainty. In addition, these QRNGs can operate at various photon intensities without compromising the random quality produced. The conclusion of this study is that quantum noise-based QRNG offers a safer and more efficient solution in generating random numbers for applications that require high randomness. Further research is needed to improve efficiency and overcome implementation obstacles in the real world.
Copyrights © 2024