Jurnal Algoritma
Vol 22 No 2 (2025): Jurnal Algoritma

Prediksi Curah Hujan Menggunakan Metode Bi-LSTM dan GRU Berbasis Data Iklim

Abdillah, Fajrul (Unknown)
Hadiana, Asep Id (Unknown)
Melina, Melina (Unknown)



Article Info

Publish Date
01 Nov 2025

Abstract

As a tropical country, Indonesia faces great challenges in predicting rainfall due to increasingly dynamic climate change. This study aims to predict rainfall in an urban area in West Java with tropical climate characteristics using deep learning methods, namely Bidirectional Long Short-Term Memory (Bi-LSTM) and Gated Recurrent Unit (GRU) based on climate data collected from local meteorological stations. The results show that the Bi-LSTM method provides more stable prediction performance with a Mean Absolute Error (MAE) value of 0.0108 and a Root Mean Squared Error (RMSE) of 0.0158. In contrast, the GRU method produced variable performance with higher MAE and RMSE values in some test scenarios. The main findings of this study indicate that the BiLSTM model has a higher level of accuracy, making it an effective information technology solution to support disaster mitigation and agricultural sector planning in climatically complex regions.

Copyrights © 2025






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...