Jurnal Algoritma
Vol 22 No 2 (2025): Jurnal Algoritma

Prediksi Dukungan Publik Terhadap Program Makan Bergizi Gratis (MBG) Menggunakan Analisis Sentimen Berbasis Long Short-Term Memory (LSTM)

Novfuja, Elma (Unknown)
Efrizoni, Lusiana (Unknown)
Ali, Edwar (Unknown)
Susanti, Susanti (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

The Free Nutritious Meal Program (MBG) is a public policy that requires evaluation based on public opinion. This study developed a Long Short-Term Memory (LSTM) model to classify public sentiment from 13,923 X reviews, collected using the tweet-harvest library. The data was processed with Word2Vec weighting and Lexicon-Based labeling, resulting in 73.4% positive sentiment and 26.6% negative sentiment. The model was tested with train-test split ratios of 60:40, 70:30, 80:20, and 90:10, with the best performance at a ratio of 80:20 (91.71% accuracy, 89% precision, 90% recall, 89% F1-score). The model architecture includes Embedding, LSTM (128 units), Dropout (70%), and Dense layers, optimized with categorical_crossentropy and Adam. The confusion matrix evaluation shows the effectiveness of the model, despite weak negative classes due to data imbalance. The results provide insights for improving MBG implementation, with LSTM excelling at capturing text patterns compared to SVM and BERT.

Copyrights © 2025






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...