Jurnal Algoritma
Vol 22 No 2 (2025): Jurnal Algoritma

Analisis Sentimen Terhadap Kinerja Awal Pemerintahan Menggunakan IndoBERT Dan SMOTE Pada Media Sosial X

Ihalauw, Sahron Angelina (Unknown)
Trezandy Lappata, Nouval (Unknown)
Wiria Nugraha, Denny (Unknown)
Wirdayanti (Unknown)
Lamasitudju, Chairunnisa (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

Social media platform X has become a key channel for expressing public opinion on political issues, including evaluating the early performance of the government. The first 100 days of an administration are a strategic period to assess policy direction and public perception. This study aims to apply and evaluate the IndoBERT model for sentiment analysis of Indonesian-language tweets discussing the 100-day performance of the Prabowo–Gibran administration, as well as to assess the impact of using the Synthetic Minority Oversampling Technique (SMOTE) to address data imbalance. A total of 15,027 tweets were collected through API crawling and processed through several stages: preprocessing, labeling using the InSet Lexicon, data splitting, and fine-tuning IndoBERT. Two scenarios were tested — without SMOTE and with SMOTE oversampling. The results show that both models achieved the same overall accuracy of 87%, but performance varied across sentiment classes. The model without SMOTE performed better in the positive class with 93% precision, whereas the SMOTE-applied model improved performance in the neutral class (F1-score increased from 70% to 71%; recall from 69% to 71%) and in the negative class (precision increased from 88% to 90%). Considering the balance across classes, the SMOTE-based model was selected as the final model and implemented into a Streamlit application for interactive sentiment analysis. This study expands the application of IndoBERT in the Indonesian political domain by combining the lexical InSet approach with SMOTE oversampling — a combination rarely applied in Indonesian political sentiment analysis. The findings highlight the importance of data balancing strategies in improving transformer-based model performance on imbalanced datasets. Future research is encouraged to explore alternative balancing methods, expand training data, and test other transformer variants to enhance accuracy and generalization.

Copyrights © 2025






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...