Natural language processing (NLP) in Indonesian faces challenges due to limited linguistic resources, particularly in developing optimal word embedding models. This study optimizes the Word2Vec model for Indonesian in higher education contexts by leveraging transfer learning and lexicon expansion. Using a dataset of 4,463 higher education related tweets consisting of positive and negative sentiment categories, the proposed NewWord2Vec model combined with a Support Vector Machine (SVM) classifier achieved a 4% improvement in word detection accuracy compared to the standard Word2Vec. This enhancement demonstrates better performance in capturing linguistic nuances and sentiment orientation in Indonesian text. However, the model’s applicability remains limited to higher education terminology, and potential biases from transfer learning must be addressed. Future research should expand the dataset to diverse domains and refine the transfer learning process to better capture contextual variations in Indonesian. These findings contribute to advancing NLP applications in Indonesian, particularly for automated assessment systems, recommendation tools, and academic decision-making processes
Copyrights © 2025