Electrocardiograms (ECG) are important for detecting arrhythmias. Conventional models such as CNN and LSTM are accurate but require large amounts of computation, making them difficult to use on wearable devices and for real-time monitoring. This study evaluates the Narrow Neural Network Classifier (NNNC) as a lightweight and efficient alternative. The dataset consists of 21 subjects with 881 ECG samples, categorized based on walking, sitting, and running activities, and processed through bandpass filtering, normalization, and P-QRS- T wave segmentation. The data is divided into training (70%), validation (15%), and test (15%) sets. The NNNC has 11 convolutional layers, a ReLU activation function, a Softmax output, and 120,000 parameters. The model was trained using the Adam optimizer, a batch size of 32, and a learning rate of 0.001 for 100 epochs and compared with SVM, CNN, and LSTM using accuracy, precision, recall, F1-score, and ROC-AUC. The results show that NNNC achieves an accuracy of 98.9%, a precision of 99.2%, a recall of 99.2%, and an F1-score of 99.2%, higher than SVM and comparable to CNN/LSTM, with lower computational consumption. The model is capable of reliably detecting early arrhythmias. These findings support the potential of NNNC for ECG-based automatic diagnostic systems, including real-time implementation on wearable devices, although further research is needed for large-scale validation
Copyrights © 2025