JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Vol. 11 No. 2 (2025): JITK Issue November 2025

ANALYZING CLIMATE IMPACTS ON RICE PRODUCTION IN SUMATRA THROUGH SPATIOTEMPORAL MACHINE LEARNING MODELS

Zaqi Kurniawan (Unknown)
Rizka Tiaharyadini (Unknown)
Puguh Jayadi (Unknown)
Windhy widhyanty (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Climate variability poses a major challenge to rice production in Sumatra, a key contributor to Indonesia’s food security. This study aims to analyze spatiotemporal climate impacts on rice yields by integrating climatic, geographical, and agricultural datasets. Historical records from 1993–2024, including rainfall, temperature, humidity, and rice production statistics, were collected from BMKG, BPS, and the Ministry of Agriculture. After preprocessing and feature selection, six machine learning algorithms—Linear Regression, Random Forest, Gradient Boosting, Support Vector Regression, Decision Tree, and K-Nearest Neighbors—were evaluated for predictive performance. Results show significant spatial heterogeneity: rainfall strongly affects yields in Aceh and North Sumatra, while temperature stress is critical in southern provinces. Among the tested models, Random Forest achieved the best accuracy (R² = 0.985), outperforming other algorithms. These findings highlight the importance of localized adaptation strategies and demonstrate the potential of ensemble machine learning to support climate-resilient rice production.

Copyrights © 2025






Journal Info

Abbrev

jitk

Publisher

Subject

Computer Science & IT

Description

Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media ...