Abstrak — Teknologi kendaraan otonom menuntut sistem persepsi visual yang andal, khususnya untuk mendeteksi rambu lalu lintas secara real-time. Penelitian ini mengembangkan sistem deteksi rambu berbasis algoritma YOLOv8 dan diimplementasikan pada prototipe miniatur kendaraan otonom. Dataset sebanyak 1.232 gambar dikumpulkan secara mandiri dan diperluas menjadi 3.696 gambar melalui augmentasi. Model YOLOv8n dilatih selama 87 epoch menggunakan Visual Studio Code. Hasil pelatihan menunjukkan precision dan recall sebesar 91,3% serta mAP@0.5 sebesar 91,3%. Pengujian dilakukan dalam kondisi terang dan gelap, statis maupun dinamis. Hasil menunjukkan tingkat keberhasilan deteksi mencapai 90% dalam kondisi terang dan menurun menjadi 48,9% dalam pencahayaan gelap. Sistem juga berhasil menjalankan aksi robotik dengan akurasi 83,3%. Hasil ini menunjukkan sistem dapat mengenali dan merespons rambu lalu lintas secara real-time secara efektif pada skala miniatur. Kata kunci — sistem deteksi, rambu lalu lintas, yolo, computer vision, kendaraan otonom, traffic sign detection
Copyrights © 2025