This study aims to analyze and predict the trend of Indonesia's non-oil and gas exports using the Facebook Prophet model, focusing on identifying seasonal patterns, trends, and volatility present in the export data. Monthly export data from 2015 to 2025, sourced from the Statistics Indonesia (BPS), were used as the basis for analysis. The dataset revealed notable seasonal patterns and substantial volatility, particularly in the period following 2020. To model these dynamics, three Prophet model configurations were tested: one considering only annual seasonality, combining both annual and monthly seasonality, and another incorporating only monthly seasonality. The evaluation of these models showed with an initial Mean Absolute Percentage Error (MAPE) of 8.70%. This model was then optimized through hyperparameter tuning. The optimal parameter configuration (changepoint_prior_scale = 0.5, seasonality_prior_scale = 0.01, fourier_order = 3) resulted in a significant improvement, reducing the MAPE to 4.73%. This optimized model demonstrated its capacity to more precisely capture the complex patterns. Furthermore, the study projected Indonesia’s non-oil and gas exports for the period from April 2025 to December 2026. The projections indicate a relatively stable export trend within the range of 20,000 to 22,000 million USD per month, with consistent seasonal patterns.
Copyrights © 2025