Jiko (Jurnal Informatika dan komputer)
Vol 8, No 3 (2025)

COMPARING REGRESSION METHODS FOR ASSESSING AND PREDICTION THE IMPACT OF SALARY INCREASES ON EMPLOYEE PERFOMANCE

Juanta, Palma (Unknown)
Djuli, Zachary (Unknown)
Tifanny, Tifanny (Unknown)
Sitanggang, Delima (Unknown)
Anita, Anita (Unknown)



Article Info

Publish Date
28 Nov 2025

Abstract

In today’s competitive digital era, data-driven decision-making is key to enhancing the efficiency of human resource management. One of the main challenges is objectively assessing the impact of salary increases on employee performance, which is often assumed to be a primary motivator but rarely proven quantitatively. This study conducts a comparative analysis of two data mining methods, Linear Regression and Decision Tree Regression, to assessing and predicting the impact of salary increases on employee performance. A case study was conducted at PT. Taipan Agro Mulia using the company’s internal historical data. The analysis shows that Linear Regression performed better with an R-Square value of 0.731 or 73.1%, indicating that 73.1% of the variation in employee performance can be explained by salary increases. In comparison, Decision Tree Regression achieved an R-Square value of 0.700 or 70.0%. Additionally, Linear Regression recorded lower prediction errors (MAE = 4.78; MSE = 38.60; RMSE = 6.21) than Decision Tree (MAE = 5.61; MSE = 66.41; RMSE = 8.15). These findings demonstrate that data analysis approaches can serve as a strong foundation for formulating strategic salary policies aimed at improving employee performance

Copyrights © 2025






Journal Info

Abbrev

jiko

Publisher

Subject

Computer Science & IT

Description

Jiko (Jurnal Informatika dan Komputer) Ternate adalah jurnal ilmiah diterbitkan oleh Program Studi Teknik Informatika Universitas Khairun sebagai wadah untuk publikasi atau menyebarluaskan hasil - hasil penelitian dan kajian analisis yang berkaitan dengan bidang Informatika, Ilmu Komputer, Teknologi ...