AbstrakPenerapan teknologi Internet of Things (IoT) dalam pertanian presisi menawarkan peluang signifikan untuk meningkatkan literasi ilmiah sekaligus efisiensi penggunaan sumber daya. Penelitian ini bertujuan mengembangkan sistem klasifikasi kebutuhan penyiraman tanaman berbasis data sensor IoT dengan algoritma Support Vector Machine (SVM). Sistem dirancang menggunakan sensor suhu dan kelembapan (DHT11) serta sensor kelembapan tanah yang dihubungkan dengan mikrokontroler ESP8266. Data dikirim secara berkala ke platform digital dan dianalisis menggunakan metode pembelajaran mesin. Evaluasi kinerja dilakukan melalui metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa SVM dengan kernel Radial Basis Function (RBF) mampu mencapai akurasi hingga 97%. Temuan ini membuktikan bahwa integrasi IoT dapat meningkatkan efisiensi pertanian presisi.Kata kunci: IoT, klasifikasi, Support Vector Machine, machine learning, pertanian presisiAbstractThe application of Internet of Things (IoT) technology in precision agriculture offers significant opportunities to improve scientific literacy and resource use efficiency. This study aims to develop a system for classifying plant watering needs based on IoT sensor data using the Support Vector Machine (SVM) algorithm. The system is designed using temperature and humidity sensors (DHT11) and soil moisture sensors connected to an ESP8266 microcontroller. Data is sent periodically to a digital platform and analyzed using machine learning methods. Performance evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results showed that SVM with Radial Basis Function (RBF) kernel was able to achieve an accuracy of up to 97%. These findings prove that IoT integration can improve precision agriculture efficiency.Keywords: IoT, classification, Support Vector Machines, machine learning, precision agriculture
Copyrights © 2025