Bulletin of Electrical Engineering and Informatics
Vol 14, No 6: December 2025

Predicting player skills and optimizing tactical decisions in football data analysis using machine learning methods

Kassymova, Akmaral (Unknown)
Aibatullin, Tolegen (Unknown)
Yelezhanova, Shynar (Unknown)
Konyrkhanova, Assem (Unknown)
Mukhanbetkaliyeva, Ainur (Unknown)
Tynykulova, Assemgul (Unknown)
Makhazhanova, Ulzhan (Unknown)
Azieva, Gulmira (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

This study investigates the integration of machine learning (ML) techniques into football analytics to predict player skills and optimize tactical decisions. A dataset of over 150,000 professional match actions from various leagues and seasons was analyzed using deep neural networks, convolutional neural networks (CNNs), and gradient boosting machines (GBM) algorithms on biometric, contextual, and match data. The valuing actions by estimating probabilities (VAEP) metric indicated scores from +1.8 to +3.0 for key players, enabling detailed performance evaluation. CNN models achieved up to 91% precision, 88% recall, and a receiver operating characteristic – area under the curve (ROC-AUC) of 0.94, confirming their effectiveness in predicting player actions and contributions. Injury risk prediction using eXtreme gradient boosting (XGBoost) reached an F1-score of 0.87 and a ROC-AUC of 0.92, offering actionable insights for injury prevention and optimal player rotation. The findings highlight artificial intelligences (AI)’s capacity to support individualized preparation, tactical adjustments, and cost-effective recruitment strategies. While computational demands and data quality remain challenges, the results demonstrate the transformative potential of AI in modern football, providing a practical framework for data-driven decision-making to enhance team performance and strategic planning

Copyrights © 2025






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...