Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of machine learning methods to analysis and evaluation of distance education Mukhiyadin, Ainur; Mukasheva, Manargul; Makhazhanova, Ulzhan; Kassekeyeva, Aislu; Azieva, Gulmira; Kenzhebayeva, Zhanat; Abdrakhmanova, Alfiya
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2172-2180

Abstract

In recent decades, distance learning has become an essential component of the modern educational system, providing students with flexibility and access to knowledge regardless of location. This paper discusses creating a hybrid machine-learning model for assessing the quality of distance learning based on survey data. The model combines two feature extraction methods: Term frequency-inverse document frequency (TF-IDF) and Word2Vec. Combining these methods allows for a more complete and accurate representation of text data, improving the quality of machine learning models. The study aims to develop and evaluate the effectiveness of the proposed hybrid model for analyzing survey data and assessing the quality of distance learning. The paper considers the tasks of collecting and preprocessing text data, experimentally comparing various feature extraction methods and their combinations, training and evaluating a machine learning model based on a combination of TF-IDF and Word2Vec features, as well as analyzing the results and assessing the effectiveness of the proposed model using various metrics. In conclusion, the prospects for further development and application of the proposed model in educational institutions to improve the quality of distance learning are discussed.
Predicting player skills and optimizing tactical decisions in football data analysis using machine learning methods Kassymova, Akmaral; Aibatullin, Tolegen; Yelezhanova, Shynar; Konyrkhanova, Assem; Mukhanbetkaliyeva, Ainur; Tynykulova, Assemgul; Makhazhanova, Ulzhan; Azieva, Gulmira
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10458

Abstract

This study investigates the integration of machine learning (ML) techniques into football analytics to predict player skills and optimize tactical decisions. A dataset of over 150,000 professional match actions from various leagues and seasons was analyzed using deep neural networks, convolutional neural networks (CNNs), and gradient boosting machines (GBM) algorithms on biometric, contextual, and match data. The valuing actions by estimating probabilities (VAEP) metric indicated scores from +1.8 to +3.0 for key players, enabling detailed performance evaluation. CNN models achieved up to 91% precision, 88% recall, and a receiver operating characteristic – area under the curve (ROC-AUC) of 0.94, confirming their effectiveness in predicting player actions and contributions. Injury risk prediction using eXtreme gradient boosting (XGBoost) reached an F1-score of 0.87 and a ROC-AUC of 0.92, offering actionable insights for injury prevention and optimal player rotation. The findings highlight artificial intelligences (AI)’s capacity to support individualized preparation, tactical adjustments, and cost-effective recruitment strategies. While computational demands and data quality remain challenges, the results demonstrate the transformative potential of AI in modern football, providing a practical framework for data-driven decision-making to enhance team performance and strategic planning