Scientific Journal of Engineering Research
Vol. 1 No. 4 (2025): October Article in Process

Ensemble Learning Framework for Image-Based Crop Disease Detection Using CNN Models

Betrand, Chidi Ukamaka (Unknown)
Benson-Emenike, Mercy Eberechi (Unknown)
Kelechi, Douglas Allswell (Unknown)
Onukwugha, Chinwe Gilean (Unknown)
Oragba, Nneka Martina (Unknown)



Article Info

Publish Date
25 Nov 2025

Abstract

Crop diseases pose a significant threat to global food security, causing substantial yield losses estimated at 10-40% annually. Traditional methods of disease identification, reliant on visual inspection by farmers or experts, are often subjective, time-consuming, and limited by the availability of specialists. This study proposes an ensemble learning framework for robust image-based crop disease detection, specifically designed to address the challenges of heterogeneous, non-Independent and Identically Distributed (non-IID) agricultural datasets in decentralized environments. Utilizing the Plant Village dataset, we implement a stacking ensemble model integrating diverse Convolutional Neural Networks (CNNs) such as VGG (Visual Geometry Group), ResNet, and Inception as base learners, with a meta-learner to optimize prediction fusion. The system employs comprehensive data preprocessing, including resizing, normalization, noise removal, segmentation, and augmentation, to enhance robustness against real-world variability. Transfer learning with ResNet50 was adopted as a baseline model. The baseline ResNet50 achieved 59% test accuracy across seven grape and potato disease classes. The ensemble model improved performance, attaining 63% accuracy with average precision, recall, and F1-scores of 56%, 52%, and 52% respectively. Class imbalance remained a limiting factor for certain categories. The ensemble learning approach outperformed individual models, demonstrating improved generalization across diverse datasets. Although computational demands and imbalance challenges persist, the system provides a promising AI-driven pipeline for accurate crop disease diagnosis, supporting sustainable agricultural practices.

Copyrights © 2025






Journal Info

Abbrev

sjer

Publisher

Subject

Engineering

Description

The Scientific Journal of Engineering Research (SJER) is a peer-reviewed and open-access scientific journal, managed and published by PT. Teknologi Futuristik Indonesia in collaboration with Universitas Qamarul Huda Badaruddin Bagu and Peneliti Teknologi Teknik Indonesia. The journal is committed to ...