Building of Informatics, Technology and Science
Vol 7 No 3 (2025): December 2025

Deteksi Komentar dan Analisis Sentimen Promosi Judi Online pada Youtube Menggunakan IndoBERT dan XGBoost

Putri, Naila Raihana (Unknown)
Kurniawan, Dedy (Unknown)
Tania, Ken Ditha (Unknown)



Article Info

Publish Date
08 Dec 2025

Abstract

YouTube, as a highly interactive platform, has become a medium for online gambling promotions, raising legal issues under the Electronic Information and Transactions (ITE) Law and social risks, particularly for adolescents. This study aims to analyse public responses to gambling-related comments and to develop an automatic detection system using Natural Language Processing (NLP). The research follows the Knowledge Discovery in Databases (KDD) stages, including web scraping, preprocessing, text transformation, model training, and evaluation. Sentiment analysis was performed on 999 comments labelled positive, negative, and neutral. Detection of promotional content was tested using IndoBERT and TF-IDF-based XGBoost, with 587 training samples and 885 external testing samples at an 80:20 ratio. The results show that the majority of comments (52.65%) are positive with a fairly high average confidence score (0.914), indicating public support for the eradication of online gambling. Meanwhile, negative comments (24.72%) with a confidence score of 0.888 generally contained criticism of the rampant practice of gambling promotion or YouTube's weak moderation system. For automatic detection, IndoBERT achieved superior performance with 0.94 accuracy and F1-score and only 10 misclassifications, significantly outperforming XGBoost, which reached 0.73 accuracy with 47 errors. This study highlights the effectiveness of transformer-based models in detecting gambling promotions while also indicating strong public support for eradication efforts. These findings provide an empirical foundation for advancing research on adaptive automated moderation systems capable of identifying concealed patterns of illicit content in digital platforms, particularly in the detection of online gambling promotional comments within the YouTube ecosystem.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...